
CTP431: Fundamentals of Computer Music

Time Scale Modification and Pitch Shifting

Juhan Nam

Outlines

● Understanding the algorithms to change pitch or length (or time-scale) of
audio waveforms
○ Resampling
○ Time-scale modification (or time stretching)
○ Pitch shifting

Resampling (Playback Rate Conversion)

● “Playback rate” is not necessarily equal to the recording rate

● Adjusting the playback rate given the recorded audio change the tone
○ Sliding tapes on the magnetic header in a variable speed
○ Speeding down: “monster-like”
○ Speeding up: “chipmunk-like”
○ It can be even negative rate: reverse playback

● Demo
○ https://musiclab.chromeexperiments.com/Voice-Spinner

https://musiclab.chromeexperiments.com/Voice-Spinner

Playback Rate Conversion (Resampling)

● Reconstruct the original signal and sample it with a new rate

● For a digital system with a constant playback rate
○ Up-sampling makes the original sound played slower
○ Down-sampling makes the original sound played faster

Interpolation Filters

−5 −4 −3 −2 −1 0 1 2 3 4 5

0

0.5

1

1.5

Windowed Sinc

Sample Time
−5 −4 −3 −2 −1 0 1 2 3 4 5

0

0.5

1

1.5

Linear

Sample Time

−5 −4 −3 −2 −1 0 1 2 3 4 5

0

0.5

1

1.5

3rd−order B−spline

Sample Time
−5 −4 −3 −2 −1 0 1 2 3 4 5

0

0.5

1

1.5

3rd−order Lagrange

Sample Time

Windowed Sync Linear Interpolation

Resampling

● Resampling changes pitch, length and timbre at the same time!

[The DaFX book]

Original

Speed Down
(Up-sampling)

Speed Up
(Down-sampling)

How can we control pitch and length independently?

● The secret is processing samples in frame-level instead of sample-level
○ The waveform is locally preserved within the frame
○ Analysis hop size and synthesis hop size are distinguished

Sample Block

Analysis hop size

Synthesis hop size

Fundamental of Time-Scale Modification

● Analysis-Resynthesis approach in a frame-by-frame manner

○ Time-stretching ratio: 𝛼 = !!
!"

(𝐻": synthesis hop size, 𝐻# : analysis hop size)

○ If 𝛼 > 1, increase the length, If 𝛼 < 1, reduce the length

Analysis Hop Size (𝐻!)

Synthesis Hop Size (𝐻")

𝑥! 𝑟 = $𝑥 𝑟 + 𝑚𝐻" ,
0,

𝑥(𝑟) if 𝑟 ∈ [− #
$
: #
$
− 1]

otherwise.𝑁
𝑁

𝑁

𝑁
𝑁

𝑁 𝑦 𝑟 = 3
!∈ ℤ

𝑦! (𝑟 − 𝑚𝐻')

ℱ: 𝑥! 𝑟 → 𝑦! 𝑟

Fundamental of Time-Scale Modification (TSM)

● If the analysis frame 𝑥! 𝑟 is the same as the synthesis frame 𝑦! 𝑟 ?
○ Discontinuity at the boundary of the unmodified frames
○ Overlapping of the synthesis frame changes the amplitude

Time-scale modification with 𝛼=1.8 [Driedger and Müller, 2016]

OverLap-and-Add (OLA)

● Enforce a smooth transition between frames and compensate the
amplitude change
○ Applying a window function 𝑤 to the analysis frame: e.g. Hann window

○ The Hann window has the following property for all r ∈ ℤ

○ The synthesis frame is computed as a windowed analysis frame with the
amplitude normalization

𝑤 𝑟 = 70.5(1 − cos(
2𝜋(𝑟 + 𝑁/2)

𝑁 − 1
)),

0,

if 𝑟 ∈ [− #
$
: #
$
− 1]

otherwise.

3
(∈ ℤ

𝑤 (𝑟 − 𝑛
𝑁
2
) = 1

𝑦! 𝑟 =
𝑤 𝑟 𝑥! 𝑟

∑(∈ ℤ𝑤 (𝑟 − 𝑛𝐻')

OverLap-and-Add (OLA)

Overlap and Add TSM [Driedger and Müller, 2016]

OverLap-and-Add (OLA)

● However, OLA has a problem for periodic signals
○ They are called phase jump artifacts

Overlap and Add TSM [Driedger and Müller, 2016]

Synchronized OverLap-and-Add (SOLA)

● Reduce artifacts in OLA by shifting the overlapped region such that the
two adjacent frames are maximally correlated

0 100 200 300 400 500 600 700 800
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0 100 200 300 400 500 600 700 800
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Analysis Hop Size

Synthesis Hop Size

Synthesis Hop Size

L

Synchronization by cross-correlation

Xcorr (l) = x1(n)
n=0

n=L−1

∑ x2 (n+ l)

Find the lag (l) where the cross correlation is maximumShift the next frame by the lag

Waveform Similarity OverLap-and-Add (WSOLA)

● A variant of SOLA that adjusts the analysis hop size

WSOLA TSM [Driedger and Müller, 2016]

Pitch-Synchronous OLA (PSOLA)

● The analysis and synthesis hop size is
synchronized to estimated pitch

● Analysis
○ Perform block-based pitch detection and

find pitch marks 𝑡$
■ Pitch period: 𝑃 𝑡 = 𝑡#$% − 𝑡#

○ Extract a segment centered at every pitch
mark 𝑡$ using a Hanning window with
length 𝐿$ = 2𝑃(𝑡$) to ensure fade-in and
fade-out

TIME STRETCHING 195

Pitch marks

PSOLA analysis

Segments

Figure 6.8 PSOLA pitch analysis.

Pitch marks

Segments

PSOLA time stretching

Synthesis
pitch marks

Overlap and add

Figure 6.9 PSOLA synthesis for time stretching.

Pitch-Synchronous OLA (PSOLA)

● Synthesis for time-stretching
○ For every synthesis pitch mark �̃�% , search

the corresponding 𝑡$ that minimizes
𝛼𝑡$ − �̃�%

○ Overlap and add the selected segment
■ If 𝛼 > 1, some segments will be repeated
■ If 𝛼 < 1, some segments will be

discarded
○ The next synthesis pitch mark �̃�% is

determined to preserve local pitch
■ �̃�&$%= �̃�& + +𝑃(�̃�&)=�̃�& + 𝑃(𝑡#)

TIME STRETCHING 195

Pitch marks

PSOLA analysis

Segments

Figure 6.8 PSOLA pitch analysis.

Pitch marks

Segments

PSOLA time stretching

Synthesis
pitch marks

Overlap and add

Figure 6.9 PSOLA synthesis for time stretching.

Pitch-Shifting

● TSM followed by Resampling
○ First, perform time-stretching with a ratio of 𝛼
○ Second, resampling the output with the same ratio of 𝛼

● Problem
○ Timbre (i.e. formant) changes by the resampling
○ This is quite audible for human voice (e.g. speech or singing)

Pitch-Shifting

● PSOLA can be used for pitch-shifting
○ For every synthesis pitch mark �̃�% , search the

corresponding 𝑡$ that minimizes 𝑡$ − �̃�%
○ Overlap and add the selected segment

■ If 𝛽 > 1, some segments will be repeated
■ If 𝛽 < 1, some segments will be discarded

○ The next synthesis pitch mark �̃�% is
determined to preserve local pitch
■ �̃�&$%= �̃�& + +𝑃(�̃�&)=�̃�& + 𝑃(𝑡#)/𝛽

○ It is possible to combine the time-stretching
(with the term 𝛼𝑡$ − �̃�%) and pitch-shifting

○ This preserves the formant of the input
sound!

PITCH SHIFTING 207

Pitch marks

Segments

PSOLA pitch shifting

Synthesis
pitch marks

Overlap and add

Figure 6.19 PSOLA: synthesis algorithm for pitch shifting.

• For every synthesis pitch mark t̃k:

(1) Choice of the corresponding analysis segment i (identified by the time mark ti) mini-
mizing the time distance |ti − t̃k|.

(2) Overlap and add the selected segment. Notice that some input segments will be repeated
for β > 1 (higher pitch) or discarded when β < 1 (lower pitch).

(3) Determination of the time instant t̃k+1 where the next synthesis segment will be centered,
in order to preserve the local pitch, by the relation

t̃k+1 = t̃k + P̃ (t̃k) = t̃k + P(ti)/β.

• For large pitch shifts, it is advisable to compensate the amplitude variation, introduced by
the greater or lesser overlapping of segments, by multiplying the output signal by 1/β.

It is possible to combine time stretching by a factor α with pitch shifting. In this case, for every
synthesis pitch mark t̃k the first step of the synthesis algorithm above presented will be modified
by the choice of the corresponding analysis segment i (identified by the time mark ti), minimizing
the time distance |αti − t̃k|.

The PSOLA algorithm is very effective for speech processing and is computationally very
efficient, once the sound has been analyzed, so it is widely used for speech synthesis from a
database of diphones, for prosody modification, for automatic answering machines etc. For wide
variation of the pitch it presents some artifacts. On the other hand, the necessity of a preliminary
analysis stage for obtaining a pitch contour makes the real-time implementation of an input-signal
modification difficult. Also the estimation of glottal pulses can be difficult. A solution is to place
the pitch marks at a pitch synchronous rate, regardless of the true position of the glottal pulses.
The resulting synthesis quality will be only slightly decreased (see, for example, Figure 6.20).

Ambient Sound Design Using Paul’s Extreme Sound Stretch

● Extreme time scale modification (e.g. 𝛼 = 50) with spectral smoothing
can transform any sound/music into a texture or ambient sound
○ http://hypermammut.sourceforge.net/paulstretch/
○ https://cdm.link/2018/02/free-plug-brings-extreme-paulstretch-stretching-

daw/

http://hypermammut.sourceforge.net/paulstretch/
https://cdm.link/2018/02/free-plug-brings-extreme-paulstretch-stretching-daw/
https://cdm.link/2018/02/free-plug-brings-extreme-paulstretch-stretching-daw/

Resources

● Rubberband
○ https://breakfastquay.com/rubberband/

● PyTSMod
○ https://github.com/KAIST-MACLab/PyTSMod

https://breakfastquay.com/rubberband/
https://github.com/KAIST-MACLab/PyTSMod

